A note on canonical forms for matrix congruence
نویسندگان
چکیده
منابع مشابه
Canonical forms for complex matrix congruence and *congruence
Canonical forms for congruence and *congruence of square complex matrices were given by Horn and Sergeichuk in [Linear Algebra Appl. 389 (2004) 347–353], based on Sergeichuk’s paper [Math. USSR, Izvestiya 31 (3) (1988) 481–501], which employed the theory of representations of quivers with involution. We use standard methods of matrix analysis to prove directly that these forms are canonical. Ou...
متن کاملCanonical Forms for Unitary Congruence and *Congruence
We use methods of the general theory of congruence and *congruence for complex matrices—regularization and cosquares—to determine a unitary congruence canonical form (respectively, a unitary *congruence canonical form) for complex matrices A such that ĀA (respectively, A) is normal. As special cases of our canonical forms, we obtain—in a coherent and systematic way—known canonical forms for con...
متن کاملCanonical Forms for Congruence of Matrices: a Tribute To
A canonical form for congruence of matrices was introduced by Turnbull and Aitken in 1932. More than 70 years later, in 2006, another canonical form for congruence has been introduced by Horn and Sergeichuk. The main purpose of this paper is to compare both canonical forms and provide a brief survey on the history of the canonical form for congruence.
متن کاملA Note on Observability Canonical Forms for Nonlinear Systems
For nonlinear systems affine in the input with state x ∈ R, input u ∈ R and output y ∈ R, it is a well-known fact that, if the function mapping (x, u, . . . , u(n−1)) into (u, . . . , u(n−1), y, . . . , y(n−1)) is an injective immersion, then the system can be locally transformed into an observability normal form with a triangular structure appropriate for a high-gain observer. In this technica...
متن کاملNearly Optimal Algorithms for Canonical Matrix Forms
A Las Vegas type probabilistic algorithm is presented for nding the Frobenius canonical form of an n n matrix T over any eld K. The algorithm requires O~(MM(n)) = MM(n) (logn) O(1) operations in K, where O(MM(n)) operations in K are suucient to multiply two n n matrices over K. This nearly matches the lower bound of (MM(n)) operations in K for this problem, and improves on the O(n 4) operations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1996
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00357-6